As soon as a pregnancy becomes recognized, each (prospective) parent generally starts to accept and plan for their new arrival. If the pregnancy is lost, this is often considered a "death within the family" and the couple will go through an intense grieving process. The loss of a pregnancy can be devastating for a couple, regardless of the number of children in the family or the cause for the loss.
Recurrent Pregnancy Loss: grieving process
As soon as a pregnancy becomes recognized, each (prospective) parent generally starts to accept and plan for their new arrival. If the pregnancy is lost, this is often considered a "death within the family" and the couple will go through an intense grieving process. The loss of a pregnancy can be devastating for a couple, regardless of the number of children in the family or the cause for the loss.
Components of the grieving process may be easier to accept and cope with if they are consciously understood. Therefore, I have outlined major issues. Interested couples can either read the original sources or consult a professional psychologist specializing in this area.
The grieving process often includes sequential periods of
There may also be changes in one's self image. The changes that have been described in the context of the loss of a body part may be relevant, including
In this grieving process, if the "redefined self images" of each member of the family can not be accepted by the other members then there is often a long lasting impact possibly resulting in depression. If a couple can "not get over the loss" then professional counseling is often quite powerful and should be recommended.
Recurrent Pregnancy Loss: Incidence Rates
No one really knows how often human pregnancies are lost. Investigation of the "rates of loss" are inherently difficult due to the inaccessibility of information.
Most of the research on incidence rates of pregnancy loss incorporate their own unique methodologies for identifying these losses. Consequently, the rates reported between studies vary tremendously. This situation has led to the apparent discrepancy often noted between doctors in their discussions on the rates of miscarriage.
The most widely accepted rate of loss for a "single spontaneous abortion" in an unselected population of couples (that is, regardless of characteristics associated with pregnancy loss) is about 15-20% (1 in 6) of "clinically detected" pregnancies (where the woman missed a menses or otherwise knew that she was pregnant).
Many pregnancies are lost prior to clinical detection but the incidence of these very early losses is not clear. A number of studies checked for pregnancy each month with a highly sensitive immunoassay from blood drawn or urine collected in sexually active women not using contraception. This research consistently demonstrates a high rate of "unrecognized pregnancy" in woman who are just "a little late for the menstrual flow." Some studies report a total pregnancy loss rate (nonclinical plus clinical) of more than 50% (1 in 2).
The chance of having a second spontaneous abortion with a history of only one isolated spontaneous abortion is generally considered to remain at 15-20% (for clinically recognized pregnancy). The incidence does not decrease (as if you used up your 1 in 6 and now must have 5 normal pregnancies) or increase significantly.
If there have been 2 spontaneous abortions in a row, then the most reliable information suggests that there is about a 35% chance (1 in 3) that the next pregnancy will be lost. Therefore, the loss rate is approximately doubled.
If there have been 3 spontaneous abortions in a row, then it appears that the couple has a roughly 45-50% chance of a loss with the next pregnancy. There are reports indicating improvement in future pregnancy success for couples with recurrent pregnancy loss after there has been at least one prior live born for the couple (that is, a 40-45% loss rate if no live borns and only a 30% loss rate with a history of a prior live born). Therefore, the couple's prior reproductive history is also important.
The spontaneous abortion rate rises as the woman's age increases, with a gradual increase starting about age 30, more rapid increases after age 35, and much more rapid increases after age 40. The age related increases in spontaneous abortion rates appear to be predominantly due to chromosomal accidents around the time of fertilization, where the egg is given one too many or one too few chromosomes so that the resulting fertilized egg (embryo) has a lethal genetic abnormality. When women over 40 or 45 years age are recipients of donor eggs from younger women they do not have this increased spontaneous abortion rate. This suggests that the cause of this increase in loss rate is related to egg rather than uterine factors.
About 80% (4 in 5) of spontaneous abortions occur in the first trimester of pregnancy (in the initial 13 weeks gestation). In couples without a history of recurrent losses if a fetal heart beat (FH) is seen by ultrasonography at 6 weeks gestational age then there is a reduced loss rate to about 5% (1 in 20). There is a further reduction if an FH is seen at 8 weeks gestation to about 3% (1 in 33). Unfortunately, in couples with recurrent losses the loss rate is still about 4-5 times greater (about 20% or 1 in 5) even after seeing an FH. Of course, seeing the fetal heart beating is reassuring but not as encouraging as if seen in an unselected population.
The high level of uncertainty involving any pregnancy seems to warrant that couples remain "cautiously optimistic" when they recognize a pregnancy. Many couples do not announce that they are "expecting" until seeing the FH or the completion of the first trimester.
Recurrent Pregnancy Loss: Overview of Causes
Many couples blame themselves (often harshly) for their pregnancy losses. In fact, it is rare that either member of the couple has done anything that would result in a pregnancy loss. Additionally, the actual incidence of pregnancy loss in the United States is much higher than typically thought. The result is that many couples might benefit from knowledge of the recognized causes for pregnancy loss.
There is a major difference in both "incidence rates" and "causes" for single spontaneous abortions and recurrent spontaneous abortions. Recurrent abortion is typically defined as three or more consecutive (in a row) pregnancy losses that occur prior to fetal viability (usually 20 weeks gestation or a fetal weight of 500 grams). The reason for this criteria is the reports of a significantly higher chance for further pregnancy loss following the loss of "three in a row."
The two major clinically important categories of causes for spontaneous abortion (miscarriage) are fetal and maternal.
Fetal causes include the genetic composition of the fetus.
Maternal causes include abnormalities in the "environment" in which the embryo and fetus develops. Known maternal causes related to an action of the mother are uncommon, but can include
Other maternal causes which are not related to any conscious activity of the mother or couple include
By far the most common causes for spontaneous pregnancy loss are fetal not maternal. It is difficult for a woman with an undesired pregnancy to consciously create an unfavorable environment for the pregnancy to successfully force a miscarriage.
Often couples blame themselves for "doing something" that must have resulted in the pregnancy loss. Focusing on themselves (often harshly) for doing something wrong is unfortunate since
Recurrent Pregnancy Loss: clinical evaluation
An evaluation for known causes of recurrent pregnancy loss is usually initiated after 2 or 3 consecutive pregnancy losses. The tremendous emotional impact of each loss may encourage an evaluation sooner than later. A full evaluation includes
If a full evaluation is completed on couples with either 2 or 3 consecutive losses there will still be about 50% (1 of 2) of couples with "unexplained" recurrent pregnancy loss. That is, roughly half of couples seem to have a reason for recurrent loss that is beyond modern medicine's ability to diagnose this cause. This can be frustrating for both the couple and the physician. In this situation, the couple will at least know that potentially repairable pathology has been ruled out. The couple can then elect to enroll in experimental protocols designed to further our knowledge of recurrent pregnancy loss. In my experience, these experimental treatments often result in reproductive success despite limited knowledge on why they work.
Recurrent Pregnancy Loss: Anatomic Causes
Implantation and development of a human embryo requires both space and an abundant blood supply. Normally both are readily available within the uterine cavity.
In the nonpregnant state, the uterine cavity is primarily a potential space (with a 5-10 milliliter volume) between the anterior and posterior muscular walls of the uterus. Under pressure (such as during operative hysteroscopy) the uterine muscular walls can be distended to about 10-30 milliliters. During pregnancy, the walls of the uterus rapidly adapt to increase the intracavitary volume for the developing fetus. The ability of the uterine walls to adapt is largely due to the muscular composition and ample blood supply. In conditions that compromise either the muscular composition of the uterus or its blood supply there is a tendency for recurrent pregnancy loss.
An estimated 15% of couples (1 in 6) with recurrent pregnancy loss have an anatomic abnormality of the uterus as the primary reason. The four categories of anatomic defects that cause recurrent pregnancy loss are abnormalites in
(1) Defects in uterine fusion and resorption
The incidence of congenital uterine fusion defects is not well established since these defects are not readily apparent without radiologic imaging (or the equivalent). Therefore, the incidence rates in the literature have a potential selection bias, since they reflect a selected group of women (that is, a population selected to have the testing required for diagnosis). Understanding this, the available reports generally cite incidences of about 1 in 200 to 1 in 600 women. Therefore, these defects are not common but also not rare. About 1 in 4 women with a congenital anomaly of the uterus due to a fusion defect will have significant difficulty with reproduction, possibly including recurrent pregnancy loss.
Mullerian duct abnormalities include
(2) DES exposure in utero
Maternal diethylstilbestrol (DES) ingestion during pregnancy was intended to reduce the likelihood for spontaneous abortion (miscarriage). DES was the first orally active commercially available estrogen compound and as it gained popularity it was widely used from the 1940s to 1971. In 1971, the association between DES exposure in utero and the subsequent development of a rare vaginal cancer (in the female offspring) named "clear cell adenocarcinoma" was established. The FDA promptly removed the pregnancy related indications for DES when these findings were revealed. Therefore, females born in 1971-1972 are the youngest to be exposed to this medication. In 1997, these women are 25 years old so reproductive consequences of the medication for this population of women is still important. The abnormalities associated with DES of reproductive importance include:
The risk of spontaneous abortion in women who were exposed to DES in utero is far greater than normal, especially when the abnormalities listed above are present.
No currently available treatment for any of these DES changes in terms of spontaneous abortion has been convincingly shown to be effective in the available literature. A common practice is placement of a cerclage into the cervix, since the abnormally developed cervix may have a strong association with pregnancy loss. The literature on the techniques and benefits of this treatment do not allow for a uniform recommendation. Another treatment that has been proposed but of unclear benefit is the hysteroscopic transsection of the lateral walls of the uterus to increase the size of the cavity. This surgery is potentially dangerous since the incisions are close to major uterine blood vessels.
(3) Abnormalities in uterine circulation
The size of the uterine cavity and its circulation is critically important for pregnancy. Uterine circulation can be altered by the presence of fibroids, endometrial polyps or scar tissue (Ashermann's syndrome).
Uterine fibroids, known as leiomyoma uteri, are tumors of the smooth muscle cells in the wall of the uterus. The uterine wall is primarily composed of smooth muscle cells (the myometrium). A uterine fibroid is thought to originate as a mutation within one of these myometrial (smooth muscle) cells that leads to the progressive loss of it own growth regulation. Each fibroid tumor grows from a single progenitor cell (each tumor arises from one single cell) and all the cells within a particular fibroid contain the same abnormal DNA that favors growth. Different fibroid tumor originate from different muscle cells, each with their own genetic (DNA) abnormality so that each tumor may grow at its own rate (some faster and some slower). Fibroid tumors are not malignant (cancer) yet there is an uncommon cancer called "leiomyosarcoma" that is composed of malignant smooth muscle cells. It is not clear whether these cancers develop from benign fibroids or whether they arise independently. Fibroid tumors of the uterus are common. About 75% (3 of 4) of uterine specimens removed during abdominal hysterectomy contain fibroids (many are quite small) and about 15-20% of hysterectomies performed in the USA are for problems involving fibroids.
The role of uterine fibroids in reproduction is usually not clear. If the fibroid is presenting (bulging) into the uterine cavity (submucosal) then it may obstruct one of the fallopian tube entrances or it may present a mechanical or other barrier to implantation. If the fibroid replaces an entire wall of the uterus, then it might interfere with the blood supply to the uterine structures around it or an embryo implanting near it. If the fibroid is predominantly on the outside of the uterus with projection into the pelvis and abdomen then it may outgrow its own blood supply and become degenerate or infected. Degenerating or infected fibroids may result in pain and irritability (contractions) of the uterus that can be associated with complications of pregnancy (preterm labor, severe pain).
Most fibroids do not seem to interfere with fertility and should not be removed unless (a) a reproductive problem is identified and (b) all other treatable causes for the reproductive problem have been evaluated and excluded. An exception is the presence of a large intrauterine filling defect seen on HSG, which should be removed. Another exception is a fibroid compressing the fallopian tubes or creating a tremendous distortion of the uterine cavity.
Endometrial polyps appear to be organized overgrowths of the uterine endometrium, although the precise mechanisms leading to their development are not clearly defined. The endometrial lining of the uterine cavity grows in response to estrogen and is architecturally restructured in response to progesterone. If the response to estrogen is excessive, either in the presence of unopposed estrogen (such as during periods of anovulation) or whenever the bioactivity of the circulating estrogen is increased (such as with increased numbers of estrogen receptors or with decreased metabolism of estrogen) overgrowth of the endometrium may occur. If these overgrowths organize and develop their own blood supply then they become polyps.
The mere presence of polypoid overgrowths in the uterine cavity may (at least theoretically) interfere with implantation and fertility. I have envisioned polyps as acting sort of like IUDs in the cavity, creating a hostile environment for embryo implantation. I remove endometrial polyps in women with reproductive problems and these women (anecdotally) seem to do remarkably well in subsequent fertility efforts. A well designed research project describing fertility outcome after treatment for different types of endometrial polyps would be valuable.
Endometrial polyps are not always benign. I removed one normal appearing endometrial polyp hysteroscopically and this was found to contain an endometrial adenocarcinoma (cancer) on pathology report. Therefore, in the presence of any atypical overgrowth of tissue it is always important to think about the possibility of cancer.
Ashermann's syndrome is the occlusion or obliteration of the uterine cavity due to damage to the lining of the cavity (endometrium). This is not common but is important to recognize it if indeed present. When the endometrium is destroyed beyond a certain depth (believed to be the basalis level which is the level that promotes subsequent growth) in the context of hypoestrogenism (a low circulating estrogen concentration) then permanent scar tissue can easily form within the cavity. Clinical situations that increase the chance of Ashermann's Syndrome include
The finding for Ashermann's Syndrome on hysterosalpingogram (HSG) exam is intrauterine filling defects.These are irregular areas within the normally triangular shaped cavity where the distending media is excluded due to the presence of the adhesions. Thin adhesions may be primarily composed of fibroconnective tissue with little blood supply. The thicker the adhesions, the greater the likelihood that they are vascular and possibly also partially muscular. Vascular and muscular adhesions are much more difficult to repair and seemingly pose a greater problem for fertility.
Repair of intrauterine adhesions is most easily and safely performed by hysteroscopy. Operating scissors can be used through some hysteroscopes but tend to be a bit flimsy for any but very thin filmy adhesions. A type of operating hysteroscope called a resectoscope allows the surgeon to apply electrical current through a monopolar cutting instrument attached as the operating element of the hysteroscope and lysis (cutting) of the adhesions can then be performed. In more complex cases of adhesions, repeated procedures may be required to accomplish complete lysis of the adhesions. After each hysteroscopic repair in which cautery is used or extensive lysis of adhesions is accomplished, the patient is typically placed on higher dose estrogen replacement (say, Premarin 1.25 or 2.5 mg by mouth each day for 30-60 days, with a Provera withdrawal flow brought on at the end of this time) to promote the regrowth of endometrium (lining) over the repaired sites. Occasionally, a stent (such as an IUD or pediatric foley balloon) is also placed within the cavity to keep the sides of the uterus apart during the repair period.
For mild to moderate adhesions, you might expect a 60-80% chance of successful pregnancy after repair. For more extensive adhesions the chance of a successful pregnancy is lower. If a pregnancy does occur after repair of Ashermann's Syndrome there is a greater chance of preterm labor and delivery (delivery of a premature baby), placenta accreta (where the placenta invades the uterine wall into the muscular component of the wall and becomes difficult to impossible to remove) and postpartum hemorrhage (heavy bleeding after the delivery of a baby).
(4) Abnormal cervical function
The cervix is very important in the development of a pregnancy. The nonpregnant cervix is normally composed of a dense collagenous fibroconnective tissue with small amounts of smooth muscle to give it a tough texture. In pregnancy, the increased water content and vascularity in the cervix leads to a softening and a blue coloration. Throughout pregnancy the cervix and lower uterine segment change but maintain a "functionally intact" internal os.
If the internal os of the cervix dilates or effaces during pregnancy this can be an ominous sign. In the beginning of pregnancy, cervical dilatation with some bleeding is known as an "inevitable abortion." In later pregnancy, cervical dilatation or effacement associated with lower abdominal cramps or pressure is a sign of labor (which is preterm if it occurs prior to 37 weeks gestation).
If there is painless dilatation or effacement of the cervix, usually occurring between the mid second trimester (about 20 weeks gestation) to the early third trimester (about 27-30 weeks), this is usually the result of an incompetent cervix. Pregnancy losses at progressively earlier gestational ages often reflect an incompetent cervix that gives way earlier with each subsequent pregnancy. The fetal membranes (chorionic and amniotic membranes) can sometimes be found bulging from the open cervix and can indeed hourglass through the cervix to fill the entire vaginal vault (which can be difficult to distinguish from a fully dilated cervix).
The causes of cervical incompetence can be congenital or acquired and include
Establishing the diagnosis of cervical incompetence with certainty can be difficult. Generally, a suggestive history of late painless pregnancy losses with the history of a plausible cause is all that is used to diagnose the condition. Additional testing sometimes suggested to confirm the diagnosis (none of which have been widely accepted) includes
Treatment of an incompetent cervix is surgical. The cerclage is an attempt to strengthen the cervix, with the two most commonly used modern techniques having been developed in the 1950s by Drs. Shirodkar and McDonald. These techniques involve the surgical placement of a suture or Mersilene band around the cervix to hold it closed. In appropriately selected women, the improvement of pregnancy outcome with a cerclage is seemingly impressive. Generally, 80-90% of women with cervical incompetence as their cause for recurrent pregnancy loss will deliver a viable live born following cerclage placement.
Recurrent Pregnancy Loss: Hormonal Causes
Hormonal causes for recurrent pregnancy loss are generally considered "luteal phase defects." Luteal phase defects are most often thought to result from inadequate progesterone effect on the uterine endometrial lining. The existing literature on luteal phase defects is inconsistent and many physicians question the significance or even the existence of these defects. More often than not, infertility specialists in the USA accept that these luteal phase defects indeed exist and are capable of playing a significant role in a small group of couples (thought to be less than 5% but some supporters claim up to 40%) with recurrent pregnancy loss.
To successfully implant into the uterus the embryo must be available during a window of time limited to a few days per cycle, referred to as the "window of uterine receptivity." If this window of uterine receptivity is not properly timed with respect to ovulation then either infertility or pregnancy loss may occur. The primary regulation for this window of receptivity appears to be hormonal (progesterone). Molecular events (currently poorly understood) change in response to hormonal shifts and most likely allow for and guide implantation of the developing embryo (fertilized egg). Research is active in this area. Descriptions of cell adhesion molecules that allow the embryo to adhere to the uterine lining (the "molecular glue" that sticks the developing embryo to the endometrium) and their hormonal (or other) regulation is just one exciting area of investigation.
Progesterone appears to have a critical role in implantation and the development of a normal pregnancy. Limited exposure to progesterone may result in infertility (severe) or recurrent pregnancy loss (milder). Characteristically, decreased progesterone results in a shortened (less than 11 day) luteal phase (period between ovulation and the onset of the next menses) or a persistently abnormal endometrial biopsy (greater than 2 days out of phase). When these changes are more severe, the impact on reproduction can be greater.
Luteal phase defects can be categorized into classes that guide treatment. The ovary's corpus luteum cyst that develops following ovulation produces progesterone. Initially, the stimulus for progesterone production is pituitary LH, which supports the progesterone production (by the corpus luteum's granulosa cells) for about 11-14 days. As LH support declines in the presence of a pregnancy progesterone production by the corpus luteum is normally rescued by placental hCG (which is functionally similar to pituitary LH) until about 7-10 weeks gestation. After 8-10 weeks gestation, the primary source of circulating progesterone changes from the ovarian corpus luteum cyst to the uterine placenta.
Three potential causes (classes) of luteal phase defects are
Infertility specialists occasionally draw upon a small handful of reports describing women with documented low progesterone concentrations in pregnancies resulting in normal outcomes. These reports force one to question the absolute necessity of progesterone, and suggest the possible importance of other nonhormonal regulators of the "window of uterine receptivity." These reports include:
The endometrial biopsy is the "gold standard" diagnostic test for luteal phase defects. It only detect defects that are due to inadequate luteal phase progesterone production. The other hCG or placental progesterone defects are not determined. Pregnancies lost due to early hormonal defects occur throughout the first trimester suggesting abnormal embryogenesis (embryo development) rather than an immediate uterine rejection.
The reliability of the endometrial biopsy has been questioned. Research on the biopsy includes
These studies emphasize the importance of attention to detail in timing and performing endometrial biopsies. In particular, an experienced pathologist or infertility specialist trained to assign dates to these tissues should be sought, there should be use of multiple ovulation detection techniques (I typically use a combination of the next menstrual period, the basal body temperatures and the ovulation predictor kits), and ideally an abnormal result should be repeated prior to diagnosing a LPD (most fertility specialists define the LPD as two consecutive out of phase biopsies) since there is a high background rate of abnormality in single random biopsies.
If an inadequate progesterone effect is documented or believed to exist during the luteal phase of the menstrual cycle then either supplemental progesterone (either as oral micronized progesterone, vaginal suppositories in a gel, or by injection in an oil base), supplemental hCG (as injections every few days following ovulation to enhance the ovary's own progesterone production) or clomiphene citrate in the follicular phase (to increase the final follicular size, number of granulosa cells and luteal progesterone production) are treatment options. Supplemental progesterone medication is usually administered until about 10 weeks gestation (after the placenta takes over progesterone production).
Reports of treatment success with progesterone supplementation for LPD often lack appropriate controls (such as a similar group of women who did not receive progesterone treatment). However, existing reports taken together support the use of progesterone supplementation in documented cases of LPD.
Claims of progesterone teratogenicity (cause of fetal malformations) are unproven. A "Collaborative Perinatal Project" report in 1977 suggested an association between fetal cardiac defects and first trimester exposure to female hormones or birth control pills. The data in this study was reevaluated (published in 1984), revealing that the timing of the hormonal drug exposure was inconsistent with the cardiac effects suggested and that if the examined pregnancies which involved Down's syndrome were removed from the data then there was no increased risk of cardiac anomalies.
In a report (published in 1985) of women who were given progesterone supplementation for prevention of spontaneous abortion (upon presentation with a threatened abortion) over 2,700 infants were examined and did not have an increased number of anomalies compared to the general population.
Overall, there seems to be no known significant increased risk of fetal anomalies in taking natural progesterone supplementation during pregnancy. However, the couple taking the medication should be aware of this potential for risk and the data that addresses this risk.
Recurrent Pregnancy Loss: Chromosomal Causes
At least 50% of the clinically recognized pregnancies that are lost in the first trimester have a major chromosomal abnormality when the products of conception are examined. In pregnancies lost later in gestation there is also a high rate of chromosomal abnormality, roughly 30% in the second trimester and 5% in the third trimester.
The "largest single class" of chromosomal abnormality found in spontaneous abortions are the autosomal trisomies (roughly 50% of abnormal specimens), some of which reveal a maternal age effect. Monosomy X is the "single most common" chromosomal abnormality found in spontaneous abortions (roughly 25% of abnormal specimens), which usually occurs due to a loss of the paternal sex chromosome (Y chromosome) and is not more common with advancing maternal age.
Certain chromosomal abnormalities are universally accepted by infertility specialists as a cause for recurrent pregnancy loss. Fortunately, these major chromosomal abnormalities are uncommon. They may occur within either the maternal or paternal chromosomes. The overall incidence of chromosomal abnormality as the cause of recurrent pregnancy loss is low (less than 5% of couples with recurrent losses). The abnormalities associated with recurrent pregnancy loss include
Robertsonian translocations
Reciprocal translocations
Paracentric inversions
Pericentric inversions
Whenever a couple has suffered three (or if desired by the couple, two) spontaneous abortions, an investigation of the chromosomes for both of the female and male is indicated. This investigation is normal 95% of the time. If an abnormality is identified, prompt consultation with an experienced human geneticist is indicated since the theories and actual experiences in this field are complex and constantly changing. Preconceptional counseling and planning with respect to prenatal diagnosis is also important. Unfortunately, there is no available treatment to "fix abnormal chromosomes" at this time.
Recurrent Pregnancy Loss: Immunologic Causes
Immunologic causes of recurrent pregnancy loss are poorly understood. The theories proposed by authorities in this field appear to be constantly evolving and most of the theories that have been proposed to date have been proven to be either incorrect or largely incomplete.
Two major categories of immunologic causes of recurrent pregnancy loss are
The immune system is designed to protect oneself against infectious organisms and their toxins. The system identifies, immobilizes and eliminates "invaders." The two major mechanisms of surveillance are
The immune system is constantly operational (turned on) since it must synthesize an enormous catalog of different antibodies and cell surface receptors to deal with the wealth of foreign material that it is presented with.
An important feature of the immune system is its ability to distinguish foreign (unwanted) material from its own (desired) self. If this ability to distinguish non-self from self fails, then the system produces an immune response against itself (or its own tissues). This is called "autoimmune" disease.
Autoimmune disease or dysfunction may play a role in up to 10% of recurrent pregnancy loss. Phospholipids are molecular building blocks that help to make up a large portion of the walls around the cells of the body, including placental cells. Anti-phospholipid syndrome (APS) is the autoimmune dysfunction that is classically associated with recurrent pregnancy loss.
APS is associated with pregnancy loss in any trimester, placental thrombosis (blood clots), and small placentae. The interruption of the circulation to the fetus via these blood clots is a possible reason for the fetal losses.
Identifying the mechanism behind the fetal losses would allow specific treatment to be developed. Clotting mechanisms are difficult to understand without a background in this area (this paragraph is included for completeness sake). Thrombosis may be caused by a relative deficiency in prostacyclin production within the cells that line the blood vessels (endothelial cells) since prostacyclin is a potent vasodilator and inhibitor of platelet aggregation. Thrombosis may also be caused by a relative insufficiency of the active form of the endogenous anticoagulant protein C, which normally degrades certain clotting factors to limit thrombosis, since phospholipids are required to activate protein C. At this time, the mechanism of thrombosis and fetal loss with APS is largely unknown.
Establishing the diagnosis of APS is important since most of the treatment options involve considerable expense and some added risk. Antiphospholipid antibodies are a large varied group of immunoglobulins directed against several different negatively charged cell surface phospholipids. Many of these phospholipids have been identified, with the best known being cardiolipin. Tests for APS can be divided into coagulation based tests and tests that detect the presence of the antibodies directly.
A group of phospholipid dependent coagulation tests are available (such as the kaolin clotting time, the plasma clotting time, dilute Russell viper venom time, and activated partial thromboplastin time) and serve as popular screening tests for antiphospholipid antibodies. Each of these coagulation tests relies on the activation of a "prothrombin activator complex" to allow for clot formation. Antiphospholipid antibodies block this activation to delay clot formation, such that in the presence of these antibodies there will be a prolongation of the time required for clotting and an abnormal result for these coagulation tests.
Other causes for an abnormal coagulation test do exist and should be ruled out if an abnormal result is found. The ways to exclude the other causes for abnormality include
These manipulations are not always run if the test ordered is abnormal (especially if a simple aPTT is ordered) but most labs are equipped to run these additional tests if requested by the physician.
There are a several available sensitive and specific assays for anti-cardiolipin antibodies, one of which should be obtained when there is a history of recurrent pregnancy loss. The classic assay for anti-cardiolipin antibodies is the Loizou ELISA, which has generally been modified over the years. At this time, the physician ordering any of the anti-cardiolipin antibody tests should become familiar with the particular assay used and its reference ranges since this information is necessary to interpret the results. When the units of measurement are GPL (IgG phospholipid units) and MPL (IgM phospholipid units) the results are not necessarily the same as when the units of measurement are IU (international units). When GPL and MPL units are used the cutoffs of normal are usually about 30 and 11, respectively. It is often easiest if the lab reports the sample results in terms of "multiples of the median" with interpretation being negative if less than 2, low positive if 2-3, positive if greater than 3. Results that are negative or low positive are generally considered clinically irrelevant and do not require treatment.
There are commercial assays for some of the other phospholipids such as phosphatidyl-serine, phosphatidyl-inositol, phosphatidyl-ethanolamine, phosphatidly-choline and phosphatidyl-glycerol. Rather than testing for each phospholipid individually, the more cost efficient test is one that detects a panel (usually all) of these phospholipids (such as an "antiphospholipid antibody package"). If the panel is positive then more specific detection of specific phospholipids can be considered. Clinically, it is not necessary to test for each of these specific antibodies since the treatment is the same for any of them. Specific testing is most appropriate in a research setting.
To summarize, all couples with recurrent pregnancy loss should be screened for APS. The tests that I routinely order include
APS is classically defined as a triad of recurrent pregnancy loss, thrombosis and autoimmune thrombocytopenia (decreased platelet concentration). For those couples with recurrent pregnancy loss, the positive finding (on 2 separate occasions) of either an appropriately performed coagulation based test or a direct antibody test is generally all that is required to propose treatment.
Without treatment, couples with APS have a poor chance of carrying a fetus to term. The worst prognosis appears to occur when there is a prior fetal loss and high anti-cardiolipin antibodies. Treatment options for APS include
Alloimmune dysfunction resulting in recurrent pregnancy loss has also been proposed. Allogeneic antigens are molecular structures that occur in different members of the same species and have the ability to elicit an immune response. Normally, a person will reject dissimilar (non-self) tissues or structures from the body using the immune system. In pregnancy, the placenta and growing embryo are not entirely "self" but rather are a result of both the maternal and paternal genetic heritages (referred to as a semi-allograft). The placenta (and pregnancy) has a "privileged" relationship with the pregnant woman that allows for it to escape rejection. The mechanism for this privilege is not known.
There have been several interesting and complex theories attempting to describe how the normal pregnancy achieves its privileged status in the maternal uterus. Thus far, none of these theories has been generally accepted and proven. Some of the theories are based on
The diagnosis of alloimmune recurrent pregnancy loss is one of exclusion. That is, when all other tests have been performed and the findings have come back normal then some of those with "unexplained" losses are thought to fall into this category.
Several physicians refuse to treat alloimmune recurrent pregnancy loss since there are no direct diagnostic tests, treatment options are expensive and their benefits are largely unproven, and treatment options potentially involve risk. I think that it is prudent to limit treatment to a research facility with expertise in these therapies. Having said this, I can honestly recall from my own experience several couples with no abnormal findings in their testing who decided to undergo this "experimental" treatment and surprisingly went on to deliver at term. It does appear that this treatment can be beneficial in some subsets of patients, its just not clear how to predict which patients will benefit. Also, you must consider that there is reportedly up to a 60-70% chance of carrying a pregnancy to term even after 3 spontaneous abortions without treatment.
The two main treatment options include
With treatment, viable pregnancy rates of 70-80% have been reported in uncontrolled studies. In my experience, better candidates for this treatment are couples who have no other treatment options available and are willing to commit themselves to the time, energy (especially emotional) and money required to pursue experimental techniques.
Recurrent Pregnancy Loss: Miscellaneous Causes
The unusual causes for recurrent pregnancy loss that are not included in other sections include:
Any life threatening maternal disease can compromise reproductive performance either through an ovulatory dysfunction or immunologic disorder. Additionally, women with insulin dependent Diabetes Mellitus who are in poor control have a greater spontaneous abortion rate while those in good control most likely do not have an increased rate. The glycosylated hemoglobin level is a reasonably good assessment of longer term control, and several reports agree that spontaneous abortion rates increase as the glycosylated hemoglobin becomes increasingly abnormal (especially when greater than 3-4 standard deviations over the mean).
Substance abuse is associated with spontaneous abortion. Cigarette smoking is associated with an increase in chromosomally normal spontaneous losses, implying a direct effect on the fetus. Alcohol abuse has been associated with spontaneous abortion if in high quantities, but results within this literature on alcohol are occasionally conflicting (generally excessive consumption is drinking at least 2-3 times per week). Illicit drug abuse affects ovulation and can result in an ovulatory dysfunction. Little is known about the early effects of these drugs on pregnancy and their association to spontaneous abortion.
Industrial or environmental toxins associated with recurrent pregnancy loss include arsenic, benzene, ethylene oxide, formaldehyde, and lead. There has been a concern especially among health care professionals regarding anesthetic gases and miscarriage, with mixed findings in the literature making it prudent to avoid routine intense exposure if possible. Irradiation during diagnostic studies with a total exposure of less than 10 rads is thought to confer only a small increase in risk of spontaneous abortion.
Medications taken during pregnancy should be reviewed with an obstetrician. The current understanding of the effect of drugs on pregnancy include
The FDA (Food and Drug Administration) uses 5 categories of labeling for drugs in pregnancy, including
Visit Dr. Daiter's website: InfertilityTutorials.com
Study shows a healthy prenatal diet could be upstream obesity prevention strategy
December 26th 2024"Our findings support the recommendation of a healthy diet based on the current guidelines (as measured by the HEI) during pregnancy, since it may reduce patterns of infant growth outside reference ranges."
Read More
Recap on reproductive rights with David Hackney, MD, MS
December 20th 2022In this episode of Pap Talk, we spoke with David Hackney, MD, MS, maternal-fetal medicine physician at Case Western Reserve University and chair of ACOG's Ohio chapter for a full recap of where restrictions on reproductive rights have been and where they're going.
Listen
In this episode of Pap Talk, Gloria Bachmann, MD, MSc, breaks down what it means to be a health care provider for incarcerated individuals, and explores the specific challenges women and their providers face during and after incarceration. Joined by sexual health expert Michael Krychman, MD, Bachmann also discusses trauma-informed care and how providers can get informed.
Listen
IUD placement within 48 hours nonsuperior vs 2 to 4 weeks after abortion
November 19th 2024A study reveals no significant difference in 6-month intrauterine device use between placements within 48 hours or 2 to 4 weeks after a second-trimester abortion, though earlier placement carries a higher expulsion risk.
Read More